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ANNOTATION

The basis of the coherent analyzer is a multiphase synchronous
detector. The big advantage of the coherent analyzer, as compared
to all existing spectrum analyzers, is the possiblity of determin-
ing the phase separated from the frequency component. Since any
time function can be expanded into two spectral functions, it is
possible to considerably reduce the Volume of stored information
without loss of time signal quality. This means that the equip-
ment used to reproduce time signals can be changed substantially.
This paper, in addition, reviews questions associated with the
accuracy of determining the amplitude and phase of the frequency
components of an input signal.
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NASA TT F-14,595

STRUCTURAL DIAGRAM AND PROPERTIES OF A COHERENT ANALYZER

B. I. Goroshkov

ABSTRACT. The development of a coherent analyzer is discussed,
as are questions associated with the accuracy of determining
the amplitude and phase of the frequency components of an
input signal.

Introduction 3*

The rapid development of radioelectronics, the deep involvement of the latter

in science and engineering, and the creation and use of what are, in principle,

new radioelectronic systems, are closely associated with the development of many

new measuring devices and measuring methods.

Radioelectronic measuring techniques have undergone significant changes in

the past decade. New instruments have appeared, measurement accuracy has

increased, the speed and reliability of measuirements have increased, the limits

of parameters measured have been expanded, and equipment for measuring and in-

vestigating magnitudes and characteristics never before measured has been built.

The spectral method of making analyses has been most widely expanded. Spectral

method of making investigations are widely used to study a variety of physical

phenomena. The method is based on the representation of the unknown time process

in the form of a sum of the harmonic components. The results of measurements

made using the spectral method are convenient for review purposes, as well as

for subsequent computer processing.

Experimental study of the characteristics of random processes plays a signif-

icant role in solving problems of detection and separation of signals from noise.

Moreover, study of the spectral composition of random signals plays an important

role in radioastronomy. The spectral composition of reflected, or direct, radio

radiation from the planets in the solar system is used to refine the compositions

of their atmospheres, surface temperatures, rate of rotation about their axes, /4

and many other parameters.

The frequency range encompassed by spectrum analyzers is very broad, from a
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few Hz to hundreds of GHz. Devices using relatively high frequencies have

acceptable size and weight, as well as technical, characteristics, but those for

use in the sonic and subsonic frequency ranges are not quite as good. Here the

basic components, the resonators, are very cumbersome and heavy, and one could

wish for better technical characteristics [1-4, 6]. Recourse is being taken to

a variety of auxiliary devices, to the method with magnetic recording [5, 7], for

example, in order to somehow improve the characteristics of analyzers in the

subsonic frequency band.

In addition, the synchronous method can be used to separate the harmonic

components in the low and extremely-low frequency regions. The principle of

synchronous detection has been described in many articles. Monograph [8] con-

tains a wide-ranging list of sources on the subject.

A significant drawback of the synchronous method is the need to synchronize

the frequency of the internal oscillator. The method that synchronizes the internal

oscillator and the input signal can be used only to separate one frequency component.

The drawback of synchronous detection, involving the need to synchronize the

internal oscillator, becomes substantial if frequency analysis of an unknown

signal is required.

Several signals, displaced with respect to phase, can be used to overcome

the influence of phase in a synchronous detector.

An unknown signal spectrum analyzer can be built using a multiphase synchro-

nous detector. This analyzer also makes it possible to construct the phase-

frequency characteristic curve of the signal analyzed.

Despite the possibilities, the scientific and technical literature does not L

yet contain any information on a multiphase coherent analyzer. No presently

available analyzers can determine the phase-frequency characteristics of an

unknown signal.

I. Possible Principles of Operation of a Multiphase Coherent Analyzer L6

Synchronous and asynchronous methods of separating a useful signal are used

more and more widely today in measurement engineering, automation, and radio

engineering.

The process of multiplying an unknown input fraction, x(t'), by a periodic
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internal function, y(t),

z,(t) = c - x(t) . y(t) (1.1)

is involved in the synchronous method of separating the frequency components

of a signal.

The internal periodic function can be harmonic, as well as relay. Signals

of the relay type have been most widely used because they are easier to realize

than the harmonic type.

If these functions are represented in the form

X(t) = E xsin(i(it.t) and j(,) -Z E lm,

then

zU) C- X X5in(wt+w)ŽY., mad
? ' e,2... ~W.I.s.. "

Multiplying these functions, we obtain amplitudes of harmonics containing

frequencies (iW + mW). When iw = mW we have the constant component

c: . PZ -t cos '7] (1.2)

This indicates that when there is coincidence of the internal function with

the external harmonic, the magnitude of the constant component depends on the

phase shift between these frequencies. If the function Z. now is fed into an

RC filter with a transfer coefficient of

K 1 , when m = 1, Kt = (1.3)~(imt t \i+(-T

it will significantly weaken the frequency components of the result of the multi- L7

plication and will separate the constant component characterizing the equality

of the frequencies.

Thus, in order to determine the frequency components of the input function it

is necessary to multiply the function by the corresponding harmonic. We can, by

changing the frequency of the internal oscillator, separate the amplitudes of all

frequency components of the input signal.

But we encounter difficulties in practice that are associated with the phase
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coefficient, cos cp, which will introduce a substantial correction in the operation

of the device when separating the different frequency components. Even if the

frequency of the separated harmonic were to coincide with the frequency of the

internal oscillator the signal would be zero at the output if there were a shift

in phase between them of 900. The phase will change constantly if the frequencies

are unstable with respect to each other, with the output amplitude of the signal

changing from maximum to zero. Beat frequencies will be generated. These can be

very low frequency, and no filters of any kind will be able to smooth out the

pulsation in the output signal. The most acceptable solution is to use a multiphase

system.

Figure 1 shows a block diagram of a multiphase analyzer.

The signal to be studied is supplied to L8

the input device, 1. This device should pro-

vide the required passband and dynamic voltage

range. The signal flows from the output of 1

to the multiplier, 3, which is supplied with a

' "--"4'~signal from the internal oscillator by another

. ! :. :. ' .. i
I

'
input. Device 3 multiplies the two signals

_ - '~.......... and the result is fed into an RC filter, The
Figure 1.

output signal from the multiplier is the output

from the RC filter. The number of outputs is determined by the number of inputs

for an internal signal. The internal oscillator signal is shaped in the phase-

shifting device, 2, the input being from the master oscillator, 5.

The device for separating the extremal values, 4, supplies the higher value

of output signals from the RC filters to the indicator.

Thus, there are several oscillators, tuned to the same frequency, and displaced

in phase with respect to each other. When one oscillator is generating minimum

phase amplitude at the output the other necessarily will be generating its

maximum value. Then, using anamplitude analyzer, we always select only the

maximum.

Figure 2 shows the mutual disposition of oscillator phases.

The vectors have a rotation rate determined by the frequency of the signal

beats. If it is taken that the vector of the separated input signal coincides with
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Figure 2.

the OX axis (Figure 2b), we see that the output amplitude for the entire device

changes its value significantly.

We have considered the operation of a coherent analyzer, the basis of which L9

is an RC filter. We can, in addition to this method of filtering and separating

the difference frequency between input and internal signals, use a resonant

circuit consisting of LC components.in which the central frequency is not equal

to zero as the filtering element. The use of LC filters greatly 'simplifies tuning

the filtering circuit for broader passbands than is the case of RC filters. Figure

3 shows the principle involved in tuning a coherent analyzer with resonant circuits.

A,

Figure 3.

Units 1 through 5 perform the same functions here as they did in the preceding

block diagram. The interaction between the two signals causes resonant filter 6 to

generate a signal at the resonant frequency. The phases of the output signals will

depend on the phase of the internal signal. A harmonic signal is supplied to the

synchronous detector, 7, from the resonant filter. A signal at the same frequency

as the resonant frequency from the LC filter is supplied to the other input to

this system. The signal generated by the synchronous detector is supplied to the

integrator, 8. Signals are supplied to the amplitude analyzer from the integrators.

As we see from the description of the principles involved in tuning the two

types of coherent analyzers, the one using the RC filters is much simpler. It L10

is this analyzer that will be given most of the attention in what follows.
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We have given a brief description of a coherent analyzer functioning on the

sequential principle in which there is one predetermined tuning frequency and a

set of phases differing from each other by Ap = 2TT/N, where N is the total number

of phases of the signal from the internal oscillator.

The internal oscillator frequency can change in the coherent analyzer when

there is a predetermined frequency spectrum. The shift in the phase will remain

unchanged regardless of the analyzer's tuning frequency.

In this case the equation for the, internal oscillator is iiin the form

il n (m { + .) (1.4)

,wci.4 sin (, o,W.. + )

Sin (m +t 2- g)2-

Let us designate sL0)
sinnternal osillator the following form

An 22w- N

Sin iv (tY + 2 A3 j sit (hnrmW.$). (1.5)

Sin( Itt: +oa _i ___

for all internal osc'illatbr r-signals in order to shorten the mathematical description.

Accordingly, in the case of a multiphase analyzer we have an equation for the

,internal oscillator ihs the following form

29r - -..

,i :Disregarding the higher frequencies of the internal oscillator in the first /11

approximation, and setting Yl = 1, we obtain

Yct)= . O 2 l-I (1.7)

Then the magnitude of the 'output signal. from the analyzer will be found from

6_ _j Z
gin (W



or

ZcOa;2 A0.5; joZ - _ 4 (1.8)

The first term under the sum sign cannot be taken into consideration because

the component determined by the sum of the frequencies will be filtered out by the

next filter.

The result is t

) n - a 

'2 S E Xi;rci ' -taw t o(4 -$P0 ] (1.9)
to,'I'z-.i 2ff Lt _

We see from Eq. (1.9) that the maximum value of the function will be determined

by the conditions iw = W0

2w- , /

X ,CX c5 (J, , z_)e 

The maximum for the function Z will be reached when the conhdition is pi =

0, where cos (pi -pj) = 1, depending on the signal phase relationships.

This equality reflects ideal coincidence of the input signal phase with one

of the internal oscillator phases. The external signal phase can take any value L12

ip. = 0 + 2 TT, however.

Since the internal signal phase takes definite discrete values in the range 0

to 2 TT, that is, cpN = 2T/N any input signal phase always will lie alongside one of the

internal signal phases. The actual phase between signals will be determined as

Y Ptot27P or COsf -cos(coSi - . 22r )

The magntidue 2r/2N characterizes the maximum deviation of the external signal

phase.

Now we obtain

Z. COz 2 cX.os v * . (1.11)
2
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Figure 4 shows the frequency and phase characteristic curves for the method

of operating a multiphase analyzer we have analyzed.

This method! of operating a coherent analyzer

can be characterized by the sequential principle

of operation with a stationary phase.

de, -r
A multiphase analyzer with a dynamic phase

Xiu~ or - ~'~~--can be built as well.

Y,, Y. , ~ j Beat frequencies, the result of the inter-

action of two signals, will appear if there is
Figure 4.

a signal with frequency wO at the input, and if

the internal signal consists of a central fre-

quency w0 and additional frequencies positioned at equal, discrete, values 6w on

both sides of the central frequency. Now when there is a gradual temporal change 1i-

in the phase between the external and internal signals with a positive initial

phase in one phase channel there will be a change in the output signal that will

be opposite in phase on the other phase channel.

The analytical expression for the analyzer's internal signal will how be in

the form

Y(e) c E Y.,Sin(.J. tK&)A)t. (1.12)

The number of discrete internal signal frequencies will be determined by the

analyzer's passband, i
a

= k-w2 or k = Ara/tw% . The magnitude &aa = &ARC is

determined by the RC filter passband.

Note that when we design an analyzer passband with a discrete set of frequencies

we obtain a resonant characteristic curve for analyzer transmission that is

significantly different from the resonant characteristic curve for an RC filter.

The analyzer passband designed in this manner will have good rectangularity.

Let us assume-that a signal with frequency wO is all that is acting at the

input. The phase between the input signal and the analyzer's central frequency

is equal to t;.

The interaction between the two signals yields

8



aRC I
-Eat I

z:,(t)~ S ~ XiY~t ~i~-cz s lr.~ r cJ~r)~j

K.o,1Z"
(1.13)

This expression does not take into consideration signals with frequency 2 w0.

They will be filtered out by succeeding filters.

Moreover, the equation that includes internal oscillator signals displaced by

a phase angle of -r/2 should be written for this expression. It is comparatively

simple to obtain a signal with a phase shift of TT/2. Signals of the same fre-

quency, but with different phases, can be tapped off the branches of the different

output triggers of the phase-shifter. It can be taken that the analyzer's output

signal is shaped in accordance with two equations

2 Sg n.~ ±(1.:
ZOiE COSiIf KA42i)

K Q42.3

zt;) = Rn.

Z.Lsin b + ort(1 )· I
-. Ai.._!

15)

Thus, if cp = O, we obtain the maximum for the function cos ~ = 1 when K = 0,

and sin p = O. The result is failure to consider the second sum and the analyzer's

output signal is determined solely by the component cos p.

Since the external signal coincides in phase with the internal signal, which

has a central frequency, the analyzer's output signal will be determined only by

the value K = O. All other values K £ 0 will yield signals with different beat
frequencies. The amplitudinal value of the signals with these beat frequencies

cannot exceed the signal value when K = 0.

We will find the analyzer in a similar state if p = rr/2. Now sin p = 1 and

cos ~ = O. Here too there is a state in which the output signal is determined

solely by the value K = 0.

If p is somewhere between O and n/2, the signal from the phase channel will

take up an intermediate position between the maximum value A and the value whenmax
p = r/4 when K = O; that is, sin p = cos p = /2 A .max

At this point the beat frequency for K 2 1 begins to play a significant role. L15

The output signal from the analyzer will be shaped from all signals.

9



The constant component of the analyzer's output signal will be shaped from the

phase channel for K = O and from the absolute value of the signal dos kMw2t ].

The variable component of this signal will have a frequency determined by the

summed action of all phase signals.

Figure 5 shows the modular values for the signals from the three phase channels.

We see from this figure that the analyzer's

output signal will be determined primarily by

the maximum beat frequency; that is, by thatFigure 5.
frequency found at the edge of the analyzer's

passband.

The frequency of the variable component of the output signal will be equal

to double the frequency of the maximum beat frequency. The amplitude value of

the signal at this frequency will be the one that will appear most often at

the analyzer output. So we can say that K = 3. The internal oscillator signal

consists of a central frequency and two frequencies located at the edges of the

analyzer's passband.

We have considered the case when the external signal coincides in frequency

with the central frequency of the analyzer's internal signal, but in the general

case the frequency of the external signal can differ from the central frequency of

the internal signal. The frequency of the external signal can lie at the edge

of the analyzer's passband, in which case the internal signal with frequency

0 + lkw2 will yield a belat frequency with the external signal that will be

close to zero. What we obtain here is the fact that the analyzer's output signal 1i
will be determined by the central frequency of the internal signal. The beat fre-

quencies that occur between the external signal and the signal from the internal

oscillator with its frequency located at the other edge of the passband will be

filtered out by the RC filter. 'They will be beyond the filter passband limits./

The picture is somewhat different if the internal signal is built from

frequencies that cover a significantly broader passband than in the case analyzed.

In the earlier case the analyzer passband was determined by the RC filter

passband, but here it can be greatly in excess of that passband; that is Aa >a

AfRC and AQa/rA 2 =)L, L > K. Then the interaction between the two signals will
be expressed by the equation

10



z (t) 2 Xin(: ."nY~+y) y SiL'("°4ZL:f,)t' (1.16)

The initial phase angle, cpi, between the signals cannot be taken into

consideration in this particular case, but it is not significant. The ana-

lyzer's output signal will be determined primarily by those beat frequencies

obtained as a result of the interaction between the signals. Moreover, let

us hypothecate that the input signal frequency is in the band O +0 ADO'

We obtain

(1.17)Z,(c;-Ci-COs6> .- 4_44t - (1.17)

We can ignore the second term of the sum if [ O+w0 ] + [:AQ +ILAw] > O. More pre- L17

cisely, this frequency sum should be larger than the RC filter passband, AQRC.

We can take it that AQRC O, because Aa >a 4QRC'

Z.(t)e .2 ^ 218)

This expression reaches its maximum if the cosine function argument is

equal to zero, [QC-WO] - [_ AQc+-LAw] = O.

If the central frequencies of the spectra, 0o and wO, coincide, that is, if

o0-w0=O, then 4Qc=LIw2. Now the output signal from the analyzer will be shaped

from that band of frequencies which is the lesser. If ec > LfW2, then Aout =

f[21AW2], andjwhen AeO < LAw2 , Aout = f[2Ac ]. Ordinarily AQc > lAw2.

When the central frequencies do not coincide Q0 wo0, the analyzer's pass-

band does not change, and is equal to L-Aw2. Changing the central frequency of

the internal signal, the analyzer will investigate the spectrum, Anc, of the

passband input signal L-w 2.

So we have a broad spectrum of beat frequencies. These signals are fed into

RC filters with passband AQRCD The analyzer's output signal will be shaped/only

by those beat frequencies in the band AQRC.

Accordingly, the analyzer ouput will have a signal amplitude at a frequency

11



matching the internal signal frequency. Signals of equal magnitude will be pre-

sent in all analyzer phase channels if the spectral density of the input signal

is constant.(noise present at the input); that is, G(w) = constant. But if the

spectral density is not uniform, and if it has an excess over the amplitudes of

the other frequencies at some frequency, the signal at the analyzer output will

have an amplitude that of this frequency. In other words, if some regular com-

ponent is present in the noise signal, its amplitude will be present at the an-

alyzer output.

Figure 6 shows the frequency and phase curves for the method analyzed, one L18

with a dynamic phase for the coherent analyzer. This method of coherent ana-

lyzer operation can be characterized by the parallel principle of operation.

We have given a brief description of the

________________ ._ _ } 'operation of a multiphase coherent analyzer

primarily as applicable to the functioning

of a relay type internal oscillator because''

"A ,~it is much simpler to obtain a frequency with

V-0o . ~ . I different phase shifts for this function than

Figure 6. for a harmonic signal in a broad range of fre-

quencies. However, the existence in the inter-

nal signal of overtones in addition to the fundamental harmonic makes necessary

a more detailed consideration of the analyzer operating principle and determina-

tion of the main specifications for its components. Moreover, the discrete nature

of the operation of virtually all components makes possible a considerable

simplification df the specifications for the components, and this provides great-

er possibilities for building a small, dependable, device.

2. Value of the Phase of the Frequency Components When Investigating the
Different Functions of the Physical Processes

The big advantage of the coherent analyzer principle, as compared to all

existing analyzers, is the possibility of determining the phase of the frequency

component singled out.

The appearance of a maximum at the analyzer output determines the phase of

the frequency component automatically. A maximum at the output means that the L1!

frequency component of the input signal coincides with the internal oscillator

signal in frequency and in phase. If the output signal is formed as a sum with

12



all phase shifts in the internal oscillator signal in order to determine the mag-

nitude of the amplitude of the frequency component, signals must be taken from

each phase channel in order to determine the phase of this component;,

The accuracy with which the phase of the frequency component is determined

will depend on the discreteness of the internal oscillator phase.

Let us consider in somewhat more detail the role of the phase parameters of

frequency components when investigating different physical processes.

If a more objective approach is to be made to the investigation of physical

processes, more attention must be given to the phase relationships between these

components when breaking the analog function down into frequency components. One

can invoke many practical examples of our having obtained almost identical spectra

during frequency analysis of different functions (Figure 7). In these cases it

is necessary to characterize the process in question as a time function, as well

as its frequency spectrum. Representation of the process in question in the

form of a frequency spectrum enables us to analyze very simply the behavior of

the different details of the object and to develop the resonance curves for

these objects.

However, occasionally it is difficult to represent the process in question

by two curves, because it is necessary to build complex devices to record the

process in question and show it graphically in its analog form. A greater quantity

of recorded material is required when recording the function in question on

different recorders. This may be acceptable in the case of relatively slow and £20

periodic processes that are recorded and processed on the ground, but significant

limitations are imposed when the instruments are installed in satellites and space-

craft. On-board instruments for data recording should take up a minimum of space.

Expansion of the spectrum of recorded processes increases the speed of the

recorders, and this,: in turn increases the quantity of recorded data to the point

where it is difficult to process. This relates to processes approaching random

ones.

We see a completely different picture when the process in question is repre-

sented by using frequency and phase spectra. Here too the results of the research

can be represented by two curves, but we can use the frequency and phase spectra

as the basis for reproducing the function in question with the help of elementary

13
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Figure 7.

constructions.

We obtain a big advantage in the recording of these spectra when we represent

the function in question in the form of frequency and phase spectra. We can use

the same instruments and devices to record the phase spectrum and the frequency

spectrum. Using G(W) and tp(w) expansions we can obtain the primary time function

x(t). But this assertion will be valid only if the passband for the coherent

analyzer will tend to zero, and, in this connection, the number of frequencies

analyzed, to infinity; that is

X ((t) = ) I G(w r )

'7 jdrt} = x(t)

14 n - I



Moreover, the advantages derived in investigating different signals when L2:

recording the phase of the frequency component can be seen from the example of

the discovery of a new photographic method, holography. Conventional photography

records the amplitude distribution of the intensity of light waves reflected from

the surface of an object, but holography records the reflected intensity of the

light, and its phase [9, 10].

We have considered the case when two functions A = f(W) and p = f(W),Iare

used simultaneously to investigate signals. But the phase function, which depend

on frequency, or on time, can be used successfully to investigate unknown signals.

It is possible to obtain four phase dependency methods:

1. p = f(w) when A = var, W = var, (2.1)

2. p = f(w) when A = const, W = var, (2.2)

3. p = f(W) when A = var, W = const, (2.3)

4. p = f(w) when A = const, W = const. (2.4)

The first method characterizes the analyzer operating mode to obtain the

phase spectrum function. It can be used successfully in combination with the

function A = f(w). The relationship between these functions was considered

above.

The phase spectrum function obtained by the second method will contain much

more information if amplitude changes in the output signal are converted into a

phase function. This conversion can be done by negative feedbacks, or by associ-

ating these changes with the function P = f(w) through a predetermined function

and thus obtain a new phase function pn = f(w, A).

Let us consider two examples in order to determine the possibilities of making

the conversion.

Known is the fact that a continuous function x(t) can be replaced by a set

of its discrete values, determined at equal time intervals, At, Figure 8a.

The spectral function of the discrete value of a unit amplitude is in the

form

The function x() then can be represented by a set of discrete values (2the5)

The function x(t) then can be represented by a set of discrete values (the

15
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Figure 8.

Kotel'nikov theorem)

-hinJfltI -I2I izdt

X..t) - 5(~.) 2r | f X.(.) e e e ' d
n-sat.z .. .- qo n.....

e 2 ;- | 

(o . 6 )

(t^-:-_ i~ > X,(t,)e d

We see that all the data on the current value of the function x(t) is con-

tained in the change in the amplitudes of the frequency components of the current

spectrum. The magnitude n-At, which is constant, determines the phase of these

components. (Actually, ?the phase of the frequency components is not constant l

if a strict approach is taken to this expression. It will change discretely

from one measurement, tn, to another, tn+ 1 We shall disregard this for now.

We are interested in the amplitude of the frequency components).

Then we can write /_24

x') --.. 2rr , ( x. ") .e d (2.7)

There is another type of conversion that can be suggested in addition to this

type of conversion of an analog signal that more neatly approaches the adaptive

method of converting data, and is shown in Figure 8b.

Eet us say we have the same function, x(t). This function can be replaced

by unit discrete changes at predetermined times

x(t) = 1(t 1 ) + (t3) ......... (t). (2.8)

The spectral function then will be determined by the sum of the spectral functions

of the individual unit changes

t)) Jt-(t/) -iw t ei r (.) ieee e d=e · oL



but

Consequently

The spectral function of the signal, x(t), is equal to

$'t<)=i-e are If e + r4

. a~,a ' -ict,

Then

xWx) L2 I ( E E p

or

Xtt) -' 2W,.. .: (2.9)

We see from this expression that the current value of the signal, x(t), is con-

tained in the phase function ijt .

Thus, we conclude that the analog function, x(t), can be replaced by the L25

amplitude-frequency spectrum, as well as by the phase-frequency spectrum. The

amplitude of the frequency components remains unchanged.

This conversion can be written as follows in general form

G(ow) e) e
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Here the parameter carrying the data on the behavior of the function is in

G(W) and (W).

This expression can be used to convert the spectra. When A(W) = constant

iT() i_,(w ) .. ...
e R e or 4 &S

The modulus is

|I *(jk)|- ~ Z(0)+ )I G-w) (2.11)

Let us approach the question of converting the spectra from another direc-

tion.

Conventionally, if the function in question is even it must be distributed

by sine component, and if odd by cosine component. The intermediate function

can be distributed by either. Here there is a phase angle that is constant for

all frequencies. Its sole dependence will be on the amplitude of the frequency

components. The connection between amplitudes and phase angle can be determined

as

where aK=f(Vsin Jt ja
...C. tb'l ,c 

If the question of the behavior of the function x(t) in time t < O (relative

to the origin of the reading) is of no interest to us, we have the right to se- 26

lect any function in this time interval and convert the function x(t) when t> O

into even or odd. We merely determine the value of the phase not dependent on

the frequency by this operation, but we can, with the equal success, consider

the function x(t) as neither even nor odd, and assign any phase shift. If a

phase shift that does not depend on the frequency is selected, we will have an

amplitude frequency spectrum for the signal in question no different from al-

ready known developments.

We will find the picture to be completely different if the phase shift is
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a function of the frequency. Observed here is a change in the amplitude spectrum

of the frequencies.

We can write the spectrum of the function x(t) as

T iwt +id (W)
Gph(W) Ti xt). e d (2.12)

Let G = constant. We must have
ph .7-

Gph(4) eons) = 2 T dtt) (2.13)

for this to be so, but o. J 4 | is the amplitude spectrum of the

function x(t). In this case

iGPh7W) GA (W) e i

ThuiGs, - i ( 2.14)

Thus, we find that all data on the behavior of the function x(t) is con-

tained in the phase of the frequency components.

But these examples have provided nothing to prove Eq. (2.10). The solution

must be approached with greater mathematical discipline. We have merely shown

that this conversion is possible. L27

The third and fourth methods for obtaining phase relationships enable us

to establish the nature of the signal in question.

All of today's research on input signals is devoted to breaking them down

into frequency components. But any frequency component separated by an analyzer

can be the product of carrier frequency modulation, and modulation can be of

different types, so the analyzer, while separating the frequency components,

failes to provide information as to the nature of these components. Neither the

fundamental frequency of the signal in question, nor the type of modulation of

this component, are known.

Operation of the analyzer in the fourth mode enables us to separate a fre- .

quency (phase) modulated signal. But the frequency constancy of this mode fails

to tell us if the analyzer is functioning on a single fixed frequency. The
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analyzer has a broad passband in this mode and can scan its central frequency in

the band in question. Fourth mode operating conditions are satisfied when the

fundamental frequency components responding to the FM (PM) oscillation are within

the analyzer's passband, and we have the modulation function of this oscillation

at the output. Thus, we can replace a whole set of frequency components with one

modulation function and we can easily present them in mathematical form for

future analysis.

The third analyzer operating mode can be used to represent the frequency

components of an amplitude-modulated oscillation.

Here a modulation function can be obtained for A = f(t) when ~ = f(t) =

constant, w = constant.

There are frequency components formed by AM and FM (PM) oscillations in

the analyzer passband if it;is found that A = f(t) and p = f(t).

This ambiguity can be eliminated by using the analyzer operating mode in £28

which signals can be converted from one type of modulation to another. An AM

signal can be converted into an FM signal, for example.

This analyzer mode permits us to select the most convenient mathematical form

for the representation of the spectrum in question. Practice can show that the

description of the mathematical function of the signal in question with AM will

be very complex, and that subsequent study of this modulation function will be

very difficult. In such cases it is desirable to represent the signal in ques-

tion by the result of frequency (phase) modulation.

Let us consider the conditions for the conversion of AMi.into FM (PM) in order

to bring about this analyzer operating condition. The amplitude changes in the

input signal must be converted into changes in the phase (frequency) of the

internal oscillator.

In the case of an AM signal

(1 + m cos Qt) sin w1 t, (2.15)

and for an FM (PM) signal

sin [w2t + qp(t)]. (2.16)
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Then

(1 + m cos Ot) sin wit = sin [w2t + p(t)], (2.17)

and

arc sin [sin W1t + m cos t 'sin w(it ] = W2t + p(t)

or

cp(t) = (wl-w
2
)t + arc sin [m cos Ot sin Wlt]. (2.18)

If the carrier (central) frequencies of both modulations coincide, that is,

if w = w1 W2

cp(t) = arc sin [m cos at sin wlt]. (2.19)

Moreover, when the analyzer filter's central frequency is w2 = O, we obtain

p(t%) = arc sin (m cos Qt). (2.20)

but S 

arc Sin x C. + - -. +.-S 1'6' 

Y(W)
' rnC° 's t+ -- *3 t ' (2.21)

When m < 1 Z29

cp(t) m cos Qt. (2.22)

We have confirmed that the spectrum of an amplitude-modulated oscillation

in the case of small values is similar to the spectrum of a frequency (phase)-

modulated loscillation.

So it is very simple to replace the complex modulation function in the AM

case by the simpler FM (PM) one because the frequency-modulated oscillation

has more harmonics.

Moreover, attention should be drawn to the fact that when the function

cp = f(t) is recorded the analyzer can be used successfully as a selector to

separate the useful harmonic signal from the noise in a narrow passband. This

cannot be done with optimum filtering and the correlation method because the

amplitude curves for narrow-band noise are similar to those for a harmonic
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signal. The significant difference in these signals is in the phase distribution.

Phase, in the case of narrow-band noise, is uniformly distributed between O and

2TT.

Figure 9 shows known curves for the density of the distribution of the phase

of a signal plus noise for different values of the signal/noise ratio, s. We

see from the graphic that values s < 1 can provide reliable evidence of the

existence of a harmonic signal at the input [10, 13].

..~..'''.'.:: : ' We have considered, very brief- L30

ly, the possibilities available to

the researcher when he uses the phase

characteristics of unknown physical

processes.

Figure 9. The arsenal of measuring devices to-

day has no devices capable of constructing phase spectra in a broad band of fre-

quencies. The multiphase coherent analyzer will make it possible to solve the

problems posed.

3. Two Methods of Building a Multiphase Coherent Analyzer

In section 1, in our consideration of coherent analyzer operating principles,

we devoted our attention solely to the term containing the cos p factor, on which

the result of separation of the frequency components is heavily dependent. But

if coherent analyzer operating principles are to be presented in more detail we

must include as well the constant component in the internal oscillator signal

spectrum, yO.

We took it that there was no constant component in the input signal. It

was assumed that there are different signals with frequency as low as desired.

We have limitations in terms of-analysis time in the case of such an assumption.

The frequency, iw, can take values as close to zero as desired in the

expression for the external signal, x(t). Upon multiplying the two functions

we obtain the summand

-.z 4) cyy2 XI sin(t (311)
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This summand has frequency W.i O. But signals that fix the coincidence of the j
internal and external signal frequencies contain a like frequency value. There

is an ambiguity in the determination of the frequency components of the input

signal. The energy of frequencies W. _ 0 will be present in the analyzer out- L31
1

put signal.

The RC filter passband must be significantly below the minimum frequency

of the input signal spectrum in order to in some way reduce the error in the

ouput signal.

Thus, when there is a constant component in the function of the internal

oscillator we have a connection between the input signal spectrum and the analyzer

passband. In this case maximum filter passband, AQRC < wi' is necessary, and n

switchings are needed to survey the frequency spectrum, Qin

an 2 _win - max min (3.2)

AnRC min

This shortcoming appears in particular in the analysis of the spectrum of low

and extremely low frequencies.

The constant component in the internal function must be eliminated as shown

in Figure 10 in order to investigate the low-frequency components of the sepctrum.\

Figure 10.

An internal signal without a constant component can be used in a broader band

of frequencies. It can be used successfully to separate relatively high frequency

components of the input signal in addition to the low-frequency part of the spec-

trum. The relative complexity of doing so with electronic components is the

drawback in the second method. Whereas only a switching unit is needed for the

first method, the second requires two similar units and they should be matched,

not only with each other, but with the analyzer input device as well. L

4. Selection of Number of Phases

In our brief description of the principle of operation of the analyzer as
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a whole we said that the output amplitude was heavily dependent on the phase

difference between the two oscillations.

We shall, in what follows, analyze and select the parameters relative to

the fundamental harmonic of the internal oscillator, and we shall take the

amplitude value of this harmonic as unity. This will simplify matters. Then

the magnitude of the output signal will be determined by the formula
cx.

z cos 
0 = 2 COSP.

The value z
0

= cxi/2 will reach a maximum only when the phase difference

between the two oscillations is zero. And because this difference can take all

values from 0 to 2 rr with equal probability, then so too can the value z + cxi/2.

We should break the whole phase range of the internal oscillator frequency down

into discrete intervals in order to rid ourselves of a random phase value. Now

the magnitude z
0
will depend on 6p = 2n/N, where N is the number of internal

oscillator signal phases. The random phase of the input harmonic can, in this

case, be in phase with the internal signal with a high degree of probability.

The range of change iniphase between the two signals will be Ap, and this means

that the change in the magni'tude z- will be much less

cx. cx.
z cx ~ 12 cos . (41)

All these arguments relate primarily to the case of absolutely stable signal

generators. The phase between the signals is fixed when the instrument is ener-

gized and remains stable throughout the measurement. The value of Ap must be

made as small as possible in order to obtain the amplitude of the separated fre-

quency component with more reliability. L

But it is a practical impossibility to keep two signals absolutely stable.

There will be a beat process taking place between the two signals, and the phase/

between the two oscillations will change with the beat frequency for these

oscillations

cos P = cos (wt. (4.2)

Let us consider the behavior of the amplitude of the output signal when

there is a frequency difference, BW, between the two oscillations and the phase

discreteness, AP.
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Figure lla shows the situation for two signals

oA £_ _ -==7- with difference phase shifts.
7 4-- _ _$

X~ ___ ,Each phase vector, 1' p2''' and so forth, ro-

w.. .X eS.e l tates with frequency Aw.when there is a frequency

a _ _ _ _ ) j difference between the two signals, Aw. When there
a b

are N phases, the magnitude of the output signal,Figure 11.

determined by the projection on the OX axis, will

have a constant component, SO, and a variable component, S , Figure llb.

As wesee from the figure, the variable component of the output signal will

have a frequency that will depend on the frequency of the passage of the OX axis

by the phase vectors. The frequency of the variable component will equal NAW.

The amplitude value of the constant and variable components can be determined

from elementary trigonometric relationships for the triangle formed by the phase-

vectors and the OX axis with angle Ap/2.

The magnitude of the constant component therefore is determined by the OC L3

vector, that of the variable component by the AC vector. We now can write the

equation for the output signal by proceeding from the fact that OC = AO + AC +

AD/2.

AO 2 C cos", AD-(4 -CX/osz jo C&;,w6sY)CXcodIAb2 2 2 4 2 I 2

Z (dv± CO Xi S' (4-3)
ZO(t)=2 2 2 2(inCOS3.

The presence of a variable component in ther:output signal will be the re-

sult, primarily, of the signal frequency difference, and it is a practical

impossibilityfto do away with this component completely because of the impossi-

bility of arriving at an absolute match in the frequencies of two different

oscillators. This match is uncontrolled and can occur only during individual

time segments.

The RC filter will have selective properties for the variable component of

this signal. The corresponding formula for finding the transfer coefficient

for the variable component, S , is

a -= I-V (4.4)

If the two transfer coefficient formulas for separating the fundamental

frequency, Ktf, and Ktu are compared, we see that Kt can be determined by the

25



frequency NA , and that Ktf will be determined by the frequency Aw.
w K~~tf

So we can write the general equation

Zf)O ¢)C O d. + sinR 4 cos]itciLo (4.5)

This relationship is shown in Figure 12.

The variable component S will intro-

duce the greatest errors at the time of

1 v.yrL Hi · | fine tuning of the internal oscillator

to the frequency component of the input

,'- -- '_ jfunction. We can obtain as small a L35

....-- . Aw value as desired at that time, one
Figure 12.

that will vanish with absolute tuning.

The indicator in this case will show a slow oscillation of the output signal, j

determined by the variable component, within certain limits.

The corresponding expressions are

RCO = Aw and AORCN = N (4.6)

when the passband is fixed at the 0.7 level for SO and S
N
.

Thus, the existence of two resonances when tuning to a predetermined frequency}

can provide significant advantages when analyzing signals. The maximum value of

the constant component can be used to determine the fact that the frequency com-

ponent of the input signal is in the passband AQRCO' The appearance of slow

deviations in output amplitude is a second criterion showing that the frequency

component of the input signal is fixed in the AdRCN band.

So we have arrived at the fact that the constant component of the ouput

signal can be found from the expressions at (4.3)
cx;.
21 cos -, (4.7)SO = 2 0°s2 N '

and the variable component has the form L36
CX.

s = 2 sin 2 N, (4.8)

The presence in the analyzer's output signal of a variable component causes

an error in finding the magnitude of the constant component signal.

The magnitude of the error in the output signal will be determined by the
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relationship

7 3 SM -toe, fo41/4. (4.9)

The curve of this function is shown in Figure 13.

7

.4

3

2

fo O 0o 4000 SO P

Figure 13.

We see that we must take a value N> 30, where the error will be less than

1 percent, if we are to increase the accuracy in determining the output signal,

and this is entirely feasible in different devices.'

5. Accuracy in Determination of the Phase of the Frequency Component L37

The possibility of analyzing unknown physical processes using frequency and

phase spectra results in obtaining much more complete information on the object

in question.

Let us see just how accurately we can determine the phase of the frequency

component of the input signal. Phase determination accuracy will depend on just

how much one phase channel differs from another in its output signal.

We already have established that when the frequencies of the internal and

external signals are matched the magnitude of the analyzer's output signal will

depend on the phase angle between them. In this case, one phase channel will

differ from the other in its output signal by the magnitude of the phase

discreteness

Az = z.(t) - z. (t). (5.1)1 +l
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But z.(t) will correspond to the magnitude p = O, that is, zi z 
O
. This can

be represented in relative magnitudes in the form

Az zTor - - cos (5.2)zAr = 1 -cos A~ Z
0 0

In the case of large values, N > 10, we can write

e2r mt psibl i o t 2 

We must have a magnitude Az as large as possible in order to distinga ishc,u

one phase channel from the other. This magnitude determines phase accuracy.

We conclude that the magnitude is

La 2 175 .(5.4)
z 2
0 N

The formula obtained establishes the inverse proportionality between the

relative error and N. This is in complete contradiction with accuracy in

determining the amplitude of the frequency component. L38

Limitations must be imposed on the magnitude Az if the two contradictory

requirements are to be satisfied. The sensitivity of the phase indicator circuit

must be increased considerably because the magnitude Az decreases with increase

in N.

As a practical matter, the solution to this problem can be approached from

both directions. We can make the circuit for recording Az sensitive, and by so

doing we can determine N, or we can calculate the accuracy in the determination

of the amplitude of the frequency component in terms of the N magnitude selected.

We already have found that accuracy in determination of the input signal

phase will depend on the discreteness of the internal signal phase. But building

an analyzer with number of phases greater than 100 is in practice, a complicated

business. The fact that the phase discriminator, the role of which is played

by the amplitude analyzer, functions as a linear device, and not as a threshold

circuit, can be used to increase accuracy in determining the input signal phase.

The signal in this case will appear in several phase channels, rather than in

one, at the output of the phase discriminator.

28



If pin is between pi and pi+1, the output signals from the phase discriminator

will equal A. = Ai . We can say with confidence that the phase of the input
1 i+l'

signal is equal to 'Pin = Pi + Pi+l/2.when these signals are equal. But if Ai /

Ai+l, the value pin will approach pi or Pi+l' when Ai > Ai+l1 in (Pi and when

Ai < Ai+l pin * Pi+l' In this case precise determination of phase will depend

entirely on the Ai to Ai+l signal ratio.

We have a signal Ai = A 0 at the phase discriminator output when pin coincides;

exactly with pi.' And Ao always is equal to AO = A. + A whatever the value

of Pin'

If it is accepted that the change in Api takes place with respect to i',

we can write pi + Api = pi+l' The value of Api can be expressed in terms of L39

the amplitude when the phase is Pi+l' APi = (A i+/Ao)AP where A = i+l - i'

When Ai+l = O, we obtain 'Pin = i'

We can, in principle, find APi+l with respect to pi+l' Then Vi+l - Ai+l =

pi and pi+l = (Ai/Ao)AP. 

We must know Ai, Ai+l, and Ao in this case in order to establish the phase

value APi('i+l). A simple electronic device can be used to find the inter-

connection between these signa'ls.

6. Influence of Filter Passband Width on Accuracy in Determining the Phase
of the Frequency Component

We had assumed, in our determination of the phase of the frequency component,

that the coherent analyzer filter passband was relatively narrow. Only one

spectral component was passed. In fact, coherent analyzer filters, no matter

how narrow we make them, have a definite passband passing all frequency components

lying on either side of the spectral component in question because the signals

in question usually have continuous spectra.

Figure 14 shows the assumed spectral curve A(w) for the signal in question

and the location of the filter passband.

We see that in the case of resonant frequency, WO, tuning of the coherent L40
analyzer signal with frequencies W

1
and W2, and amplitudes Al and A2, respec-t

tively, will pass in addition to the fundamental frequency.
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Let us represent the frequency curve for

)the filters as a rectangle. Upon conversion

A: Z of the signal frequencies, W1 , WO, and W2,

lA · ~ 1 the signal with frequency wo will be converted

into a constant component, the others into

variable components, and their frequencies

.4.. ~_ .... _2 :{ will be Aw1 = W0 - W1 and Aw 2 = W
2

- w
o

,

Figure 14. Aw A d)
2
'

The difference between the.signals is because of the opposite phases involved.

The amplitude of the variable component will be A
2

- Al = AA-. WeI have A a =

O when Al = A2.

Note that components A1 and A
2
can differ in phase, as well as in amplitude.

Then the magnitude Aa will have a much more complex dependency on the phases of

signals A1 and A
2
. We can ignore the magnitude AAa if we take it that the filter

passband is narrow enough to cause a considerable phase difference;in the fre-

quency components within the band limits.

This question requires special consideration, so we shall not pause to

consider it here. We shall assume that the frequency components Al and A
2
have

identical phases.

The variable component AAa will introduce an error into the consideration of

the phase of signalA0, so the readings of the coherent analyzer can change. This

assertion is valid only if the error exceeds the threshold level, determined by

the discreteness of the analyzer's phase.

We know that one of the internal analyzer signals is in phase with the

input signal during the isolation of amplitude A O. Signals with amplitudes

less by the magnitude Aph= AO - AO cos Ap, where bAp is the discreteness of L41
the analyzer's phase, will be present at the analyzer outputs on either side

of the main signal.

So if Aa > AA p,we will observe a periodic change in phase at the analyzer

output. But if Aa < AA phthe influence of the components A1 and A2 cannot be

included. The boundary condition is the equality Aa = AAh, that is? AA = 

AO - AO cos Ap, or when AC p O

AA
O

" AO Ap. (6.1)
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Eq. (6.1) shows that the influence of adjacent harmonics is reduced when the

isolated frequency component amplitude values are large. The influence of the

components Al and A2 is increased when AO values are small. Consequently, by

increasing the gain factor for the input signal preamplifier we can avoid the

influence of the components Al and A2.

This condition, moreover, plays a positive role in signal analysis because

in this case attention must be given to the frequency components with relatively

large amplitude. The small components usually are ignored during analysis.

7. Dischargable filter

Let us consider the behavior of a filter when there is a "step" law change

in the internal oscillator frequency. Each step is a predetermined internal

oscillator frequency, With the result that we have a discrete frequency change.

We have assumed, in our-consideration of coherent analyzer operating

principles, that the internal oscillator frequency comprises the fundamental,

the first harmonic, of the signal, as well as the third, fifth, and so on.

But this is valid only providing that the time to integrate the product of

the two functions is long enough. More precisely, the internal oscillator

spectrum takes shape in the form of individual frequency components during

the analysis. L42

We know thatithe spectrum of a limited pulse sequence can be determined

by the total number of pulses flowing in a predetermined time interval.

There will be a resonance curve with band AWRC at the output if the

internal oscillator signal consists of individual frequency components. This

band is fixed in the main RC filter. Broadening of the passband of the

resonance curve at the corresponding band takes place when;ithere is a certain

spectrum of frequencies, AOh, in the internal oscillator signal. If Anh > AWRC

the filter bandpass can be considered to be AL h. When &Ah + AURC, the filter

passband will be determined by the sum Adh + dAlRC.

So, if after the passage of some period of time, Ato, during which the

filter's output amplitude is formed, we discharge the energy that has accumu-

lated in the capacitance, and if, in the next interval, Ato, isolate the next

frequency, we will, by taking the value of the output signal before discharging
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the filter, have fine tuned the analyzer to the specified frequency. The resonance

frequency of filter tuning will not shift during time Ato, as is the case in the

dynamic mode. Analyzer passband is expanded if the time to analyze one frequency

component is reduced.

Let us use the method already developed in radar theory to solve the problem

of changing the coherent analyzer passband in the case of a variable RC filter

discharge time.

We knowlthat the spectrum of a sequence of square pulses can be described

by the equation

(7.1)

2

where L4

S0 (W) is the spectrum for a single pulse;

N is the number of pulses;
P

T is pulse length;
P

T is the pulse repetition rate.
P

As we see from the formula, energy will begin to be concentrated near the

frequency W = kwp = kT (21/Tp) with increase in the number of pulses, N 

Figure 15 shows the amplitude spectrum for N = 3 (a) and N = 9 (b).

~~~a P ,<.>A i

Figure 15.

The middle of the main lobes corresponds to frequency

Wr
p = k Tr, k = 0, 1, 2, 3... (7.2)

2The passband at the and the maximum

The passband at the zero level is equal to 6w
O

= 2wN/Np, and the maximum
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amplitude at the 0.7 level is

, 0.7 N N (7.3)
P P

The important fact is that the width of the main lobes is inversely propor-

tional to the total duration of the pulse package

ato N T . (7.4)
pp

These relationships enable us to obtain an important connection between some

of the analyzer parameters.

Thus, w1/Aw1 = Npl pulses will be required if it is required to determine the

lower frequency component of the spectrum 1 with p&ssband Aw1 A(time t = N lTV,

or t = N 1 .(2r)/Wl1,is required to form N 1 pulses. Then, in order to separate

the higher frequency component of this band, wh, in time t, it is necessary to

have Np2 pulses; Np2 = t/th. The passband for the higher frequency, wh' will

equal a = hI/Np2' or wh = WhTh/t = l/Npl

Aw = Aw1 . (7.5)

Thus, the passband for all frequencies in this spectrum is the same, given

constancy of time for analysis of the frequency components of the spectrum.

If constancy of number of pulses analyzed is used as the base, we obtain a

change in passband for different frequencies for the entire band. Thus

o 1 = '-
P

and

Ah
ah = N

P

Then

WU1 A l _1

Aw =- w, or _ (7.6)
we see that broadening the filter passband at the higher frequency of the

So we see that broadening the filter passband at the higher frequency of the
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band will be directly proportional to the ratio of the two extreme frequencies in

this band.

The above can be used as the basis for determining the connection between the

passband and the rate of change in the frequency of the internal oscillator:

Y = (fh - fl)/T , where y is the rate of change in ithe frequency of the internal
oscillator. But the entire band of frequencies fh - fl can be scanned with

discreteness Af; that is, fh - fl = ndf. This requires n switchiigs. These n

switchings are required to provide the time to analyze the entirefrequency

spectrum, T = nt , where t is time for analysis of an individual band, bf.
a a a

The result is y = Af/taa

Moreover, we know that analysis time, to, depends on the resonant frequency

and on the number of pulses passed by the internal oscillator. If we say that

time tan is assigned to each isolated frequency band, Af, for any resonant fre-
a

quendy, then t = l/Af,

Y = 6f2. (7.7)

But if we say that the constant is the number of pulses passed by the

internal oscillator, we obtain t = N p/f
r

f 2IN 2 (7.8)

where

f is the resonant frequency.
r

Thus, use of a dischargable filter has made it possible to overcome the L45

drawbacks in step-by-step analyzers associated with the dynamic resonance curve.

We obtained the maximum possible rate of change in frequency.

8. Formation of the Analyzer's Square-Wave Characteristic Curve

An analyzer operating in the dischargeable filter mode has a conventional

bell-shaped resonance characteristic curve. The filter reacts to the adjacent

frequencies not contained in the passband because the curve has flat tails.

The flat tails of the curve prevent making the determination of the frequency

of the isolated component with the necessary accuracy.

If the resonant frequencies of the filters are separated so as to be free

of adjacent signals, we can have the case when some of the frequency components

of the input signal will not appear in any of the passbands of the isolated
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frequencies. In the ideal case we should have a f-shaped curve for all resonant

frequencies which touch each other with their passbands, forming the overall

passband for the device. The square-wave resonance curve can be obtained from

the individual curves for narrow-band filters. They can be formed as follows

in the analyzer. The analyzer is tuned in turn to the individual frequencies,

1
... W

m . The analyzer's output signal is integrated. The filters and inten-t

grater are discharged when frequencyjw is reached. The mean value for the band

of frequencies in question is formed at the analyzer output.

If the passband for the individual filter equals bw, the overall passband

for the analyzer can be determined as

mR -=EJ = mar (8.1) 46

When-,constructing a square-wave curve using a dischargeable filter, consid-

eration must be given to the fact that any resonant frequency in this band will

be isolated in time At with period mat, but then the integral value of the output

amplitude of the filter will equal a = A(4t/mat), where A is the amplitude value

of the input frequency. If the filter curve is bell-shaped, it will be necessary

to:double the time this frequency is acting in order to form the filter's output

signal from frequenc wl2, which is between the two resonant frequencies w
1
and

w
2
. So, when frequency w is isolated, frequency W12 will pass at the output.

The situation is similar for the isolation of resonant frequency W
2

(Figure 16).

....... Signal blA12 will be present at the out-put if9te 1 12
put if the filter is tuned to frequency W1

1~/ j j \ 2 It because frequency W
1 2

will be acting. Here b

i 1J4 Z2 -| is the attenuation factor for the bell-shaped

curve, and A is the amplitude of the input
Figure 16. Fsignals. We obtain b2A for frequency w2

2. 12 U2

The following must prevail in order to obtain a flat peak on the resonance

curve

A1 = A2 = (b1 + b 2
) A12 (8.2)

We can set bl = b
2
when *12 is located symmetrically between the frequencies

and when there is identity between the resonance curves (we shall not consider

the case when a narrow-band curve with high Q is used to isolate Wl, and one with

lesser Q is used to isolate W2 ). L47
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Since A1 = A2 = 2bA12, b 1b 
2 = 0.5. In this case the resonance curve

resultant is practically flat.

Since AwRC = 3/T for the resonance curve for an RC filter at the 0.5 level,

resonant frequencies w and w2 should be found at this tsame frequency distance.

Then the filter passband at the 0.7 level, fixed by frequencies w1 and w2

will consist of

A =wl · (8.3)
2 12 2 T

If the passband is formed from a large number of individual, identical,

curves, the general equation will be in the form

2+3(m-l) _ 3m-1 (8.4)
Q0.7 = T

For determination of the quality of rectangularity of a f-shaped curve at

two levels - 0.1 and 0.01. The bell-shaped curve has band AWO.1 20/T at the

0.1 level, and Aw0 .01 % 200/T at the 0.01 level. We obtain the following pass-

bands, respectively, for the f-shaped curve at these levels

LnO 3m+17 _ 3m+197 (8.)
0.1 

=
0.01 7

In this case the rectangularity of the curve will equal

n O. 3m+17 . T 3m+17 (8.6)
0.1 0- - 7 3m-1 3m-1

ri 3m+197 (8.7)
0.01 3m-1

We can simplify these expressions for m > 3

3m+17 1+ 6 (8.8) L480.01 3m m

66
o01 = 1+ (8.9)0.01 m

A rectangularity of o0.
1

_ 2-3 can be taken as practically acceptable for a

great many tasks, as work with transmission gates has shown. The expression

obtained for 1 can be used to obtain the calculated rectangularity, even for
0.1

values of m = 4, a completely acceptable magnitude.

Determination of rectangularity 0.0 1 equates primarily to those devices with



more rigid discrimination specifications. Values of 1 5 were obtained here.

It is necessary to have m = 16 in order to obtain a similar rectangularity in

our case.

9. Determination of Amplitude-Frequency and Phase-Frequency Spectra of a
Signal in Question Using an Electronic Computer

The foregoing was concerned primarily with consideration of an analog method

of obtaining the amplitude-frequency and phase-frequency spectra of a signal

in question. But we can, in addition to this method, build a coherent analyzer

with a digital filtering method. The input signal must be quantized and con-

verted int6 a binary code for this purpose. The input signal can be replaced by

a set of numbers, Figure 17a

x(t) 1' 2' 3' ......... xn

The input signal conversion frequency is fh, and the conversion period is T .
hn,'~ n

a tii f 111 1[Ji i T ·-T'1JJ0 r-ri
t I.
b I' L

;fl.N

Figure 17.

Let us determine the amplitude and phase

the function x(t). The constant component of

df the frequency components of

this function equals

I.
n "I n, 

where

n is the total number of measurements.
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The amplitude of the signal with the lowest frequency can be determined if /49

all measurements of signal x(t) are broken down into two large groups. Each

result of a measurement in a group is multiplied by a definite factor determined

by the sine function, Figure 17b.

Then the amplitude of the first harmonic can be determined as

YAon; , eX, i +2c(-. 1 (9.2)

The coefficients of the sine function must be shifted one measurement to

the right in order to determine the phase of this frequency component.j We

obtain the following new value for the amplitude of the first harmonic.

= ,t X n o - n (9.3)
n-2 n-

Thus, by moving q one whole set of-measurements, we obttain n values for the am-

plitudes of the first harmonics of the function x(t). Selected from all am-

plitude values is the maximum amplitude of the.first harmonic, Alm, and.thetime

of appearance of this maximum with respect to the number of discrete shifts in

a is fixed, that is

Am n - di | (9.4)

The magnitude of the phase of this harmonic can be determined with accuracy

dAC = 2T (9.5)
n

The value of the phase of the first harmonic is equal to

P = 2 .m. i (9.6)

We can use a similar method to determine the amplitude and phase of the

next harmonic, with the only difference being that the number of measurements

during the period of activity of the second harmonic will be n - 1.

If the frequency of the first harmonic is equal to

f (9-7)1 nT
n

the second harmonic will have the value 51'

f2 (n-l (9.8
(n-1)T

n
38



the third harmonic

f3 = 1 , (9.9)
(n-2)T

n

The maximum frequency in the spectrum will be

f = 1 (9.10)
m 27

n

If the spacing of a for isolating the frequency component is considered to

be f = 2fl, it will be seen that the number of measurements involved in the

determination of the harmonic's amplitude and phase will be reduced. But this

results in a reduction in accuracy in determining the phase of the frequency

component of the input signal. Thus, the accuracy in determining the phase of

the second harmonic is equal to

2TT
At92~~~~~ n~~~~(9.11)

2P = n-l1

and the accuracy in determining the phase of the third harmonic is equal to

2~
2TTp3 n_(9.12)

-93 = n-2

The phase of the harmonic with maximum possible frequency resolution will be

determined with accuracy

m 2= T= r.- (9.13)

Thus, accuracy in phase determination decreases with increase in frequency.

Consequently, if we must have the upper frequency of the input signal spectrum,

f , with the accuracy that for determination of the phase of this harmonic, Apu,

the frequency of quantization of the input signal will equal

2nf~~~~ f.~ ~(9.14)
fn AC

u
u

This method of converting an input signal can be widely used in remote data

processing systems to reduce the time required to transmit telemetry data. /

However, the number of measurements made df a signal in question can be

limited because of the limited volume of the memory of these systems.' In this

case the input signal must be processed in steps. Signal x(t), for example,

can be processed for a time segment t1 to tn, where tl can be zero, to form two
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characteristics

x(t
1
- tn) + Al(w), Pl( (9.15)

and for the time segment from t to t
n zn

x(t - tzn) AB2 (W) p2 (w) etc. (9.16)

The result is that we obtain a set of spectra that equate to different

moments in time for the signal iniquestion. Further, these spectra can be com-

bined into one when we consider that spectra A2(W), p
2
(w) are shifted relative to

the origin of the reading, tl, by phase shift Cp2 = wtl.

In this case it must be considered that

2(w)) := 2 (w) + tc1 . (9.17)

The resultant amplitude and phase of each frequency component can be found

by using the known formulas

A 2+ A2 + 2A A (9.18)
12 =A1 + A2 + 2A1A2 cos (pl+ T2 ) ' (9.18)

a -I eas o z Atf cos ~ - (9.19)

Similar conversions can be made with the other spectra as well. Thus

A, A' AA, As A6 A, AS
IA, / A/, / Al \A3 l , (9.20)

The result is that we obtain spectra A36(w) and (p3 6(W), which characterize the

time function for time T1 = t3n - tl.

As will be seen from the foregoing, the signal in question can be resolved Z53

into frequency components if it has a limited band of frequencies, AF = f ' fl'

and is limited to time T1.

The maximum time signal x(t) will be active will be determined by the beat

frequency for frequencies fl and f2

f = f2 - f1 (9.21)
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or

At ln .nln--) (9.22)

Considering that n > 1, we obtain

af = -- (9.23)
n T

n

So the time the input signal will be active will equal

T 1 n2T . (9.24)
1 Af n

Thus, we must have longer realization of the input sign'al in order to in-

crease the time it is active. This means that we must decrease the frequency of

the spectrum to the minimum possible.

In order to determine the frequency of the spectrum flow < fl using the

same number of measurements that we used in the preceding case, we must

conditionally increase the length of the realization, Figure 18a. We can take

it that measurements xl, x2
, ... x are within the initial sections of the time

segment. All measurements for time t
k
> t can be equal to some constant, or, in

the frequency case, to zero. For simplicity, we will take it that x n 1 Xn2' x.

Xk = 0' Then, as in the first case, the amplitude of the harmonic with the low

frequency, fl low' will be determined as

but- 

j4 . - 4

a rj KI

b , 

Figure 18.
41



i

Here too dkXk = 0., then
n+l k

1 n
A =low - d kxk . (9.26)1 low d k xk-

The amplitude of the harmonic with the other phase can be determined as

in the preceding case. All succeeding harmonics of the input signal can be

determined similarly.

The result is a set of spectra

1 low w), P1 low(W)

A2 low(
w
) ' P2 low(w)

x(tl - tk) low( low( (9.27)

Ai low(W) i low(W)

These spectra can be converted into a single spectrum by using Eqs. (9.18)

and (9.19). Here it should be pointed out that summing the harmonic components

belonging to the different spectra can be accomplished without considering the

time shift because all these spectra belong to one time realization.
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